The Dimer Partition Function

نویسنده

  • Igor Pesando
چکیده

We apply the Ginzburg criterion to the dimer problem and we solve the apparent contradiction of a system with mean field α = 12 , the typical value of tricritical systems, and upper critical dimension Dcr = 6. We find that the system has upper critical dimensionDcr = 6 , while for D ≤ 4 it should undergo a first order phase transition. We comment on the latter wrong result examining the approximation we used. E-mail [email protected], 22105::PESANDO, 31890::I PESANDO In this letter we would like to show how it is possible to recover the upper critical dimension of the dimer system without using renormalization group arguments but with the use of the Ginzburg criterion. In this way we solve what could appear as a contradiction: the mean field critical exponent α = 1 2 and the upper critical dimension Dcr = 6; in fact α = 1 2 is the typical value of the mean field critical exponent of the tricritical transitions that have upper critical dimension 3. Differently from previous works ([3, 4]) we do not use renormalization group arguments. We consider the following action defined on a lattice G 1 [1] Zdimer = ∫

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partition function of periodic isoradial dimer models

Isoradial dimer models were introduced in Kenyon (Invent Math 150(2):409–439, 2002)— they consist of dimer models whose underlying graph satisfies a simple geometric condition, and whose weight function is chosen accordingly. In this paper, we prove a conjecture of (Kenyon in Invent Math 150(2):409–439, 2002), namely that for periodic isoradial dimer models, the growth rate of the toroidal part...

متن کامل

On the Dimer Problem and the Ising Problem in Finite 3-dimensional Lattices

We present a new expression for the partition function of the dimer arrangements and the Ising partition function of the 3-dimensional cubic lattice. We use the Pfaffian method. The partition functions are expressed by means of expectations of determinants and Pfaffians of matrices associated with the cubic lattice.

متن کامل

Grassmann Variables and Exact Solutions for Two-Dimensional Dimer Models

We discuss some aspects of a new noncombinatorial fermionic approach to the two-dimensional dimer problem in statistical mechanics based on the integration over anticommuting Grassmann variables and factorization ideas for dimer density matrix. The dimer partition function can be expressed as a Gaussian fermionic integral. For regular lattices, the analytic solution then follows by passing to t...

متن کامل

Topological Phase Transitions and Holonomies in the Dimer Model

We demonstrate that the classical dimer model defined on a toroidal hexagonal lattice acquires holonomy phases in the thermodynamic limit. When all activities are equal the lattice sizes must be considered mod 6 in which case the finite size corrections to the bulk partition function correspond to a massless Dirac Fermion in the presence of a flat connection with nontrivial holonomy. For genera...

متن کامل

The 3D Dimer and Ising problems revisited

We express the 3D Dimer partition function on a finite lattice as a linear combination of determinants of oriented adjacency matrices and the 3D Ising partition function as a linear combination of products over aperiodic closed walks. The methodology we use is embedding of cubic lattice on 2D surfaces of large genus. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

] 1 6 M ay 2 00 5 THE 3 D DIMER AND ISING PROBLEMS REVISITED

We express the finite 3D Dimer partition function as a linear combination of determinants of oriented adjacency matrices, and the finite 3D Ising partition sum as a linear combination of products over aperiodic closed walks. The methodology we use is embedding of cubic lattice on 2D surfaces of large genus.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993